We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Manufacturing

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Squeeze Casting?

By Alex Newth
Updated: May 17, 2024

Squeeze casting is a method of forming metal into shapes by using two dies that are squeezed together. Most casting techniques use two dies that are squeezed together before the metal is added but, in squeeze casting, the two are pushed together after the metal is added. This is done with liquid metal, and the upper die is only removed when the metal has cooled. By using this technique, the metal will typically come out stronger, with a better grain and less metallic shrinking. This commonly is done with magnesium, aluminum and their alloys, but many other metals can be used.

Most casting techniques involve the use of two dies, but squeeze casting uses the dies in a different way. The two casts normally are placed together and liquid metal is poured into the case. With a squeeze cast, a pool of liquid metal is placed in the bottom die and an upper die comes in and squeezes the metal into a shape. Pressure is being applied via the upper die, so this is not strictly casting, as it adds forging to create a hybrid technique.

Only liquid metal can be used in this application. While materials such as plastic can melt at high temperatures, this technique will not be suitable to cast plastic. After the upper die is set, workers wait until the metal is completely cool. Once cool, the upper die will be released and the required shape will have been cast into the now-solid metal.

There are several advantages to squeeze casting that increase the metal’s functionality. One benefit is that the metal will typically be stronger, because the cooling method forms a better grain when compared to other casting techniques. There is a tight seal and pressure between the two dies, so less metal is able to evaporate, leading to less shrinking during the cooling process.

Magnesium, aluminum and metals alloyed with these two sources usually are used in squeeze casting, because they are easy to melt and have varied uses. At the same time, nearly any metal can be used in this process. Unless the metal is liquid at room temperature — like mercury — or dangerously radioactive — like plutonium — most low- to medium-temperature melting metals can be used. High-temperature melting metals are often unusable, because they would end up melting the dies or are too difficult to cast correctly without warping or other errors.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.