We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Active Rectification?

By Geisha A. Legazpi
Updated May 17, 2024
Our promise to you
About Mechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At About Mechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Active rectification is the process of converting alternating current (AC) into direct current (DC) with very low distortion in the low-voltage inputs. Input AC levels between 0 and 0.7 volts (V) are a common concern when using silicon or germanium passive rectifiers. The ideal diode will turn “on” with a zero voltage across the anode and the cathode. In real-world circuits, however, there will be a forward voltage drop across the silicon diode of about 0.7 V and about 0.3 V for the germanium diode.

The use of active rectification is for circuits that handle low levels of AC such as for specialized detection of amplitude modulation (AM) signals. In AM, the radio frequency (RF) carrier has an average peak level, or envelope, that carries the modulation or the information transmitted on the radio wave. After recovering the carrier, there is an AM detection circuit in the AM receiver that recovers the envelope. If the envelope is less than 0.7 V and demodulation is required, an active rectification circuit is needed.

In alternators, synchronous rectification instead of active rectification is utilized. Synchronous rectification is made possible by synchronous contacts referred to as commutators. When a rotor winding is progressing in a positive going output, that rotor winding is rapidly connected or commutated into the output terminal. Once its voltage is below a certain positive minimum level, it is disconnected from the output. Several of these windings are utilized for output in turn while the rotor keeps rotating, resulting in DC output without electronic rectifiers.

The active rectification technique may use active devices such as transistors and operational amplifiers. Inverting operational amplifiers with a diode on the feedback loop between the operational amplifiers output and the inverting input exhibit near ideal active rectifier characteristics. The very small forward current needed to operate the mentioned diode will produce a less than 0.01 V distortion in the output signal, and this is a big improvement over passive rectification, which requires at least 0.3 V input. In electrical power conversion, there is little need for active rectification due to the relatively high voltages being converted. Passive rectifiers that cause voltage losses of about 1.4 to 2 volts direct current (VDC) are acceptable since huge voltage margins are available from unregulated voltage sources.

H-bridge is a very useful circuit configuration. When used with diodes, the H-bridge becomes a full-wave rectifier. The DC outputs are taken where the anode-anode and cathode-cathode nodes connect. When used with transistors, the H-bridge is able to provide bidirectional drive to a load such as a motor or a loudspeaker. In active rectification applications, the H-bridge may be used to provide the signal clamping and impedance transformation needed for a more stable circuit operation.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.