At AboutMechanics, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

What Is SMED?

SMED, or Single-Minute Exchange of Die, is a revolutionary lean manufacturing technique that drastically reduces equipment setup times, often to under 10 minutes. By streamlining processes, it enhances efficiency and flexibility in production lines. Curious about how SMED can transform your operations and boost productivity? Discover the steps to implement this game-changing method in our comprehensive guide. Ready to revolutionize your workflow?
M. Walker
M. Walker

Single-minute exchange of die (SMED) is a manufacturing process that favors rapid changeovers between running different machines and producing different units. The term does not refer to changeovers of less than a minute, but rather ones that occur within single digits, or less than ten minutes. SMED is useful for streamlining production processes by removing bottleneck effects, reducing waste, and decreasing the inventory space needed at any given time.

During a typical manufacturing process, the machinery and equipment is turned off and reconfigured once all of the products have completed a run. In-progress products must be stored at this time until the new equipment has been prepared for a second run. This period of time, known as the changeover, is where SMED focuses to create lean manufacturing.

SMED is useful for decreasing the inventory space needed at any given time.
SMED is useful for decreasing the inventory space needed at any given time.

Manufacturers used to assume that it was the most cost effective to optimize the number of units produced in each step of the process, but in reality improving changeover and enacting lean production tactics can save time and money. Not only will this reduce the required inventory space to store in-progress units, also known as lot size, but it will also increase the return on investment (ROI) by using the equipment more efficiently. The number of works in progress (WIP) also decreases because products are turned out in smaller, faster batches.

A common example of SMED in practice is the Toyota® vehicle manufacturing process. The process initially focused on high numbers of units for each step, but the company found that rapid changeovers saved them money in the long run. This is because they were spending large sums of money storing WIP on expensive land, whose costs were higher than the cost of changeovers. By streamlining the equipment set-up times, the company was able to save money by reducing their economic lot size (EOQ), which had previously been large.

There are several targets for improving lean manufacturing that SMED tackles. First, the process requires the removal of steps or equipment that are not essential. This could involve anything from implementing new, more universal equipment to limiting adjustments on non-essential machines during changeovers. Second, the process should include all of the necessary materials for the next step, as well as records of their locations, to make sure that everything needed is present at the time of the changeover. Simplification of the necessary steps in the changeover and thorough measurement and testing are the last main steps in the SMED process.

You might also Like

Discussion Comments


@SkyWhisperer - I don’t think you can assume that the American car manufacturers are not using this process. Toyota was simply used as an example.

If it works, we are probably using it too. I have no doubt that American manufacturers have had SMED training in addition to other processes and workflow techniques that lead to efficient production methods.

I do wonder if computer software is used here to help optimize the manufacturing methods. Since their changeover methods involve reducing equipment that is not often in use I think that software could be used to help with this decision making and ensure that the processes are efficient.


I think that the Japanese car makers have always been paragons of efficiency when it comes to their manufacturing operations. Whether you are talking about Kanban systems which focus on making intelligent decisions on what inventory to produce and when, or the SMED system here, the effect is the same. Efficiency is the end result.

I don’t know how American car manufacturers fare in comparison but I think they could learn a few lessons here. As for the SMED system itself I think it makes sense.

From what I understand they’re focusing less on putting the maximum amount of stuff on the conveyor belt to streamlining their changeover to new products. It sounds like a smart system to me.

Post your comments
Forgot password?
    • SMED is useful for decreasing the inventory space needed at any given time.
      By: bugphai
      SMED is useful for decreasing the inventory space needed at any given time.