We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Load Pull?

By Geisha A. Legazpi
Updated May 17, 2024
Our promise to you
AboutMechanics is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AboutMechanics, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A load pull is the alteration of the load impedance of a radio frequency (RF) load for purposes of measuring the resulting performance of RF power devices for large signals and extreme conditions. The device under test could be an RF power amplifier with typical 50-ohm impedance, which is the nominal line impedance. Load pull measurements make it possible to observe circuit characteristics useful in improving the design of a circuit for better performance under extreme signal conditions and operating conditions.

In radio electronics, an RF power amplifier is ideally rated as purely resistive at its center frequency. An RF amplifier is designed to operate at a certain range of frequencies, thus there will be performance measurements needed at frequencies other than the center frequency. Usually, there is diminished performance on the extremes of the frequency range. The extreme lowest and highest frequencies for the range may result in an amplifier gain that is half of that in the center frequency.

Load pull changes the impedance of the load for testing power amplifiers, while source pull changes the output impedance of the signal source. For instance, the output impedance of a power amplifier could be modified to measure the resulting power transfer characteristics. This could include the measurement of transmission efficiency, determining the ratio of the actual power that reaches the load to the actual power that was sent from the transmitter. Harmonic load pull takes note of the output impedance and line impedance at harmonics, which are frequencies that are multiples of the operating frequency. For instance, double the operating frequency is the second harmonic, while triple the operating frequency is the third harmonic.

Impedance matching between the radio transmitter and the transmission line requires electrical conditions that involve the capacitive and inductive characteristics of both the radio transmitter output and the transmitter. The capacitive reactance in a circuit is caused by the proximity of circuit nodes that cause an electrostatic field to be produced by the difference in voltages. The result is a tendency for the voltage to lag the current flow. This mechanism causes a need to compensate the capacitive effects with inductive elements in the circuit. The inductive element may be lumped inductors or may be distributed inductance due to the lengths of the circuit wires or copper traces.

A tool called a Smith chart aids the process of impedance matching. The Smith chart indicates the purely resistive circuit as well as the two cases where a reactance dominates. A circuit may be capacitive or inductive if it is not purely resistive. In a purely resistive circuit, the load absorbs all input power. Load pull measurements can assure that the performance of the circuit at small and large signal levels is acceptable, considering criteria such as transmission efficiency and harmonic output.

AboutMechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

AboutMechanics, in your inbox

Our latest articles, guides, and more, delivered daily.