We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Electrical

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is a Buck Converter?

By Geisha A. Legazpi
Updated: May 17, 2024

A buck converter is a converter that decreases the voltage that reaches a direct current (DC) load. For instance, the output of a 24-volt (V) direct current (VDC) power source may be stepped down to energize 12-volt equipment. A well-designed buck converter is able to provide a steady output voltage under varying load conditions and maintain very low-power dissipation, leading to high efficiency.

Linear regulators may be a simple solution for low-power requirements. They make use of a series pass power transistor that controls the current across the load to produce the steady DC output voltage. If a 50-VDC supply used a linear regulator to drive a 25-V load at 1 ampere (A), the power across the load as well as the linear regulator will be 25 watts (W). This means 50 W is being drained from the 50-V power supply. The conversion efficiency is 50%, but if a buck converter is used and the power dissipation in the buck converter is 2.5 W while the power at the load is still 25 W, the efficiency is about 90%.

The buck converter is a DC to DC converter that operates much like a switched-mode power supply (SMPS), which controls the duty cycle of a fixed frequency square wave. When the load requires less current, the “on” time of the square wave is low, but when the load requires a current very close to the limit of the SMPS, the “on” time goes beyond 85%. The switched DC uses a series inductor with fast-switching diode that uses the inductive backflow to sustain energy transfer when the main driving element is off for brief periods.

For an application that is opposite that of the buck converter, the step-up boost converter (SUBC) is used. The SUBC generates an output voltage that is higher than its input. In this application, the inductor in series with the load converts a collapsing magnetic field into a DC voltage that is higher than the circuit’s input voltage.

Another electrical power conversion device is the buck-boost converter that can work either as a buck converter or as a boost converter. In solar energy systems, it is possible to obtain a wide DC voltage range depending on the availability of sunlight. A battery bank charged by a photovoltaic array may have a voltage ranging from 40 to 56 VDC. If a sensitive load requires 47 to 49 VDC, then a buck-boost converter will work as a boost converter when the battery bank voltage is less than 47 V. The converter will work as a buck converter when the voltage is more than 49 V.

About Mechanics is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.

About Mechanics, in your inbox

Our latest articles, guides, and more, delivered daily.